

Article

Ruthenium-Catalyzed Aromatization of Enediynes via Highly Regioselective Nucleophilic Additions on a D-Alkyne Functionality. A Useful Method for the Synthesis of Functionalized Benzene Derivatives

Arjan Odedra, Chang-Jung Wu, Taduri Bhanu Pratap, Chun-Wei Huang, Ying-Fen Ran, and Rai-Shung Liu *J. Am. Chem. Soc.*, **2005**, 127 (10), 3406-3412• DOI: 10.1021/ja043047j • Publication Date (Web): 19 February 2005

Downloaded from http://pubs.acs.org on March 24, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 17 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Ruthenium-Catalyzed Aromatization of Enediynes via Highly Regioselective Nucleophilic Additions on a π -Alkyne Functionality. A Useful Method for the Synthesis of Functionalized Benzene Derivatives

Arjan Odedra, Chang-Jung Wu, Taduri Bhanu Pratap, Chun-Wei Huang, Ying-Fen Ran, and Rai-Shung Liu*

Contribution from the Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, ROC

Received November 18, 2004; E-mail: rsliu@mx.nthu.edu.tw

Abstract: TpRu(PPh₃)(CH₃CN)₂PF₆ (10 mol %) catalyst effected the nucleophilic addition of water, alcohols, aniline, acetylacetone, pyrroles, and dimethyl malonate to unfunctionalized enediynes under suitable conditions (100 °C, 12–24 h) and gave functionalized benzene products in good yields. In this novel cyclization, nucleophiles very regioselectively attack the internal C1' alkyne carbon of enediynes to give benzene derivatives as a single regioisomer. Experiments with methoxy substituents exclude the possible involvement of naphthyl cations as reaction intermediates in the cyclization of (*o*-ethynylphenyl) alkynes. Deuterium-labeling experiments indicate that the catalytically active species is ruthenium– π -alkyne rather than ruthenium–vinylidene species. This hypothesis is further confirmed by the aromatization of *o*-(2'-iodoethynyl)phenyl alkynes with alcohols. We propose a nucleophilic addition/insertion mechanism for this nucleophilic aromatization on the basis of a series of experiments.

Introductions

Bergman aromatization of enediynes¹ has attracted considerable attention because of its potential applications in medicinal and materials chemistry (Scheme 1, eq 1).^{2,3} The Bergman reaction of unstrained enediynes can be implemented by an excess (>1.0 equiv) of metal complexes under mild conditions via metal–vinylidene intermediates^{4a,b} (eq 2) or through a metalchelated effect.^{4c-f} The metal–vinylidene process mimics the cyclization of 5-allene-3-en-1-ynes (Saito–Myers cyclization)⁵ occurring at 50–100 °C (eq 3).⁴⁻⁶ Uemura et al. recently reported⁶ rhodium-catalyzed Bergman reactions via this protocol,

Scheme 1

which led to dehydrogenation or C–H bond insertion of an tethered alkane (eq 2). In all examples reported to date, the cyclization of enediynes via metal–vinylidene intermediates has followed the traditional diradical mechanism, and these reactions have very limited applications in organic synthesis because they cannot give functionalized benzenes from unstrained and unfunctionalized enediynes.^{1–5}

In contrast, the aromatization of enediynes via nucleophilic addition (anionic Bergman cyclization) is more useful because organic functionality can be introduced onto aromatic products via suitable nucleophiles.^{7,8} Although anionic Bergman cyclization was first reported by Magnus in the early 1990s,^{7c} such reactions have never been implemented by metal catalysts. The

 ⁽a) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25. (b) Lockhart, T. P.; Comita, P. B.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 4082.

⁽²⁾ Reviews: (a) Enediyne Antibiotics as Antitumor Agents; Borders, D. B., Doyle, T. W. Eds.; Marcel Dekker: New York, 1995. (b) Xi, Z.; Goldberg, I. H. In Comprehensive Natural Product Chemistry; Barton, D. H. R., Nakanishi, K. Eds.; Pergamon: Oxford, 1999; Vol. 7, p 553.

Nakanishi, K. Eds.; Pergamon: Oxford, 1999; Vol. 7, p 553.
 (3) Recent reviews: (a) Basak, A.; Mandal, S.; Bag, S. S. *Chem. Rev.* 2003, *103*, 4077. (b) Rawat, D. S.; Zaleski, J. M. *Synlett.* 2004, 393. (c) Bowles, D. M.; Palmer, G. J.; Landis, C. A.; Scott, J. L.; Anthony J. E. *Tetrahedron* 2001, 57, 3753. (d) Grissom, J. W.; Gunawardena, G. U.; Klingberg, D.; Huang, D. *Tetrahedron* 1996, *52*, 6453. (e) Wang, K. K. *Chem. Rev.* 1996, *96*, 207.

⁽⁴⁾ For selected examples of stoichiometric metal-mediated Bergman cyclization, see: (a) Wang, Y. S.; Finn, M. G. J. Am. Chem. Soc. 1995, 117, 8045. (b) O'Connor, J. M.; Friese, S. J.; Tichenor, M. J. Am. Chem. Soc. 2002, 124, 3506. (c) Zaleski, J. M.; Rawat, D. S. J. Am. Chem. Soc. 2001, 123, 9675. (d) Warner, B. P.; Millar, S. P.; Broene, R. D.; Buchwald, S. L. Science 1995, 269, 814. (e) Konig, B.; Hollnagel, H.; Ahrens, B.; Jones, P. G. Angew. Chem., Int. Ed. Engl. 1995, 34, 2538. (f) Landis, C. A.; Payne, M. M.; Eaton, D. L.; Anthony, J. E. J. Am. Chem. Soc. 2004, 126, 1338.

 ^{(6) (}a) Ohe, K.; Kojima, M.-a; Yohehara, K.; Uemura, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 1823. (b) Manabe, T.; Yanagi, S.-I.; Ohe, K.; Uemura, S. Organometallics 1998, 17, 2942.

widespread use of this protocol has been restricted by its limited scope: the reactions required either anionic nucleophiles, such as sodium methoxide and thiophenoxide,⁷ or strained cyclic enediynes.8 Techniques for the cyclization of unstrained enedivnes using mild nucleophiles and metal catalysts are currently unavailable and thus provide a challenge in synthetic chemistry. This report describes a novel ruthenium-catalyzed aromatization of unstrained enediynes with mild nucleophiles. This new pathway is mechanistically interesting because it does not follow the traditional Saito-Myers protocol; the active intermediate is metal-alkyne rather than metal-vinylidene species.^{4a,b,6}

Results and Discussions

Although cyclization of unfunctionalized enediynes has been performed with different approaches, including diradical pathways,^{1b,9} eletrophilic additions,^{10a-c} and radical cation,^{10d} these reactions only gave benzene^{1b,9} or fulvene products¹⁰ of special types. We seek to find a new method to realize the aromatization of functionalized enediynes with various nucleophiles. We selected $TpRuPPh_3(CH_3CN)_2PF_6$ [Tp = tris(1pyrazolyl)borate]^{11,12} as the catalyst because it reacts with terminal alkyne to form a cationic ruthenium $-\pi$ -alkyne complex that equilibrates with ruthenium-vinylidene species.¹³ Scheme 2 shows the catalytic protocols that we design to realize this nucleophilic aromatization with high regioselectivity: (1) electrocyclic cyclization of these ruthenium $-\pi$ -alkyne or -vinylidene intermediates to generate reactive naphthyl carbocations A (path i) and B (path ii) that can be trapped by suitable nucleophiles and (2) nucleophilic attack at ruthenium $-\pi$ -alkyne species to give vinylruthenium species (path iii), followed by a 6-endo-dig insertion reaction. We envisage that nucleophilic additions preferably occur at the internal alkynyl C'(1) carbon for species **A** and **B** and at the terminal alkynyl C'(1) carbon

- (7) For anionic Bergman cyclization, see: (a) Wu, M.-J.; Lin, C.-F.; Lu, E.-D. J. Org. Chem. 2002, 67, 5907. (b) Wu, M.-J.; Lee, C.-Y.; Lin, C.-F. Angew. Chem., Int. Ed. Engl. 2002, 41, 4077. (c) Magnus, P.; Eisenbeis, S. A.; Rose, W. C.; Zein, N.; Solmon, W. J. Am. Chem. Soc. 1993, 115, 12627. (d) Sugiyama, H.; Yamashita, K.; Nishi, M.; Saito, I. Tetrahedron Lett. 1992, 33, 515.
- (8) For the cyclization of strained enediynes with anionic nucleophiles, the enediynes actually underwent traditional Bergman or Saito-Myers diradical processes after attack of anionic nucleophiles. For examples, see: (a) Nicolaou, K. C.; Dai, W. M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387 and references therein. (b) Hirama, M.; Fujiwara, K.; Shigematsu, K.; Fukazara, Y. J. Am. Chem. Soc. 1989, 111, 4120. (c) Wender, P Hartmata, M.; Jefferey, D.; Mukai, C.; Suffert, J. Tetrahedron Lett. 1988, 29, 909. (d) Bekele, T.; Brunette, S. R.; Lipton, M. A. J. Org. Chem. 2003, 68. 8741.
- (9) For cyclization of enediynes via diradical pathways, see: ref 1b and (a) Jones, L. H.; Hartwig, C. W.; Wentworth, P., Jr.; Simeonov, A.; Wentworth, A. D.; Py, S.; Ashley, J. A.; Lerner, R. A.; Janda, K. D. J. Am. Chem. Soc. 2001, 123, 3607. (b) Grissom, J. W.; Gunawardena, G. U. Tetrahedron Lett. **1995**, 36, 4951. (c) Schottelius, M.; Chen, P. J. Am. Chem. Soc. **1996**, 118, 4896. (d) Dai, W.-M. Curr. Med. Chem. **2003**, 10, 2265.
- (10) For cyclization of enediynes with electrophile addition^{a-c} and radical cation,^d see: (a) Whitlock, H. W., Jr.; Sandvick, P. E.; Overman, L. E.; Reichardt, P. B. J. Org. Chem. Soc. 1969, 34, 879. (b) Whitlock, H. W., Jr.; Sandvick, P. E. J. Am. Chem. Soc. **1966**, 88, 4525. (c) Kindock H. W., H., Saldvick, P. E. J. Am. Chem. Soc. **1966**, 88, 4525. (c) Schreiner, P. R.; Prall, M.; Lutz, V. Angew. Chem., Int. Ed. **2003**, 42, 5757. (d) Schmittel, M.; Kiau, S. Liebigs Ann/Recl. **1997**, 1391.
- (11) For catalytic reactions that use this ruthenium catalyst, see the following selected examples: (a) Yeh, K.-L.; Liu, B.; Lo, C.-Y.; Liu, R.-S. J. Am. Chem. Soc. 2002, 124, 6510. (b) Datta, S.; Chang, C.-L.; Yeh, K.-L.; Liu, 6895. (e) Madhushaw, R.-J.; Lo, C.-Y.; Huang, C.-W.; Su, M.-D.; Shen, H.-C.; Pal, S.; Shaikh, I. R.; Liu, R.-S. J. Am. Chem. Soc. 2004, 126, 15560.
- (12) Chan, W.-C.; Lau, C.-P.; Chan, Y.-Z.; Fang, Y.-Q.; Ng, S.-M.; Jia, G. Organometallics 1997, 166, 34.
- (13) (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Bruneau, C.; Dixneuf, (a) Host, B. M. AC. Chem. Res. 2002, 53, 695, (b) Buneau, C., Dikheu, P. Acc. Chem. Res. 1999, 32, 311. (c) Puerta, M. C.; Valerga, P. Coord. Chem. Rev. 1999, 193–195, 977.

for species C because of its electron-deficient character. For paths (i) or (ii), the success of this nucleophilic cyclization relies on the hypothesis that the resonance structures are best represented by singlet state species A and B rather than the diradical resonance forms A' and B'.

As shown in Scheme 3, treatment of o-ethynylphenyl alkyne 1a (1.50 M) in a solvent mixture of water and 3-pentanone (1:1 volume ratio, 100 °C, 24 h) using 10 mol % TpRuPPh₃(CH₃-CN)₂PF₆ catalyst gave 1-naphthol 2a in 75% yield. The yield was decreased to 51% for a 5% loading of catalyst. Similar cyclizations were also observed for enediynes bearing prop-1ynyl and but-1-ynyl substituents 1b and 1c, which gave 2-substituted 1-naphthol 2b and 2c in respective yields of 71 and 65%. The reaction was inhibited by basic additives, including Et₃N (10 mol %) or DBU (10 mol %).¹⁴ Such a nucleophilic aromatization is novel and surprising because many electrophilic metals catalyze the hydration of terminal alkynes to give methyl ketones very efficiently.¹⁵ The value of this cyclization is shown by the regioselectivity of the addition of water, which occurs only at the internal C5 alkyne carbon. The structure of 2a was easily determined by its ¹H NMR spectra.¹⁶ Ketone 3 was unlikely to be a reaction intermediate because it failed to give 1-naphthol 2a under similar catalytic conditions. We examined the cyclization of **1a** using various ruthenium

⁽¹⁴⁾ In the presence of aliphatic amine base, cationic ruthenium complex tends Bustelo, E.; Carbo, J. J.; Lledos, A.; Mereiter, K.; Puerta, M. C.; Valerga, P. J. Am. Chem. Soc. 2003, 125, 3311. (b) Bruce, M. I.; Wallis, R. C. Aust, J. Chem. 1979, 32, 1471. (c) Haquette, D. T.; Pirio, N.; Touchard, Aust. J. Chem. 1979, 32, 14/1. (c) Haquette, D. T.; Pirio, N.; Touchard, L.; Toupet, P. H.; Dixneuf, J. J. Chem. Soc., Chem. Commun. 1993, 163. (d) Yang, S.-M.; Chan, M. C.-W.; Cheung, K.-K.; Che, C.-M.; Peng, S.-M. Organometallics 1997, 16, 2819.
 (15) (a) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. Engl. 2002, 41, 4563. (b) Tokunaga, M.; Wakatsuki, Y. Angew. Chem., Int. Ed. Engl. 1998, 37, 2867. (c) Damiano, J. P.; Postel, M. J. Organomet., Chem. 1009, 502 2022. (d) Uncure S. Microchi U. Olarge, M. Chem.

Chem. 1996, 522, 303. (d) Uemura, S.; Miyoshi, H.; Okano, M. J. Chem. Soc., Perkin Trans. 1 1980, 1098. (e) Baidossi, W.; Lahav, M.; Blum, J. J. Org. Chem. 1997, 62, 669.

⁽¹⁶⁾ The structures of the addition products in Tables 1-4 were assigned on the basis of two new doublets (J = 7.8 - 8.0 Hz) in the aromatic regions.

Table 1. Regioselective Alkoxylation and Hydration in the Aromatization Reactions

enediyne	s	ROH ^{a,b}	arene ^c	enedi	ynes	ROH	arene ^c
$R^1, R^2 = [$	JS2			$(7) R^3 =$	Me(1e)	R = H	2 j (71%)
	∿نړ			(8) 1e		$\mathbf{R} = {}^{i}\mathbf{R}\mathbf{u}$	2 k (81%)
(1) $R^3 =$	H (1a)	$R = {}^{i}Bu$	2d (81%)	(0) 10		K Du	2 K (0170)
(2) $R^3 =$	Me (1b)	$R = {}^{i}Bu$	2e (65%)	$R^1, R^2 =$	-(CH ₂) ₄ -		
(3) 11)	$R = ^{n}Bu$	2 f (66%)	(9) $R^3 =$	H (1f)	R = H	2 l (74%)
(4) 11)	R = sec-Bu	2 g (62%)	$(10) R^3 =$	Me (1g)	R = H	2 m (70%)
(5) $R^3 =$	= Et (1c)	$R = {}^{i}Bu$	2h (60%)	$(11) R^{1} =$	H, $R^2 = {}^nC_6I$	H ₁₃	
$\mathbf{R}^1, \mathbf{R}^2 = \cdot$	-(CH ₂) ₃ -			R ³ -	= Me (1h)	R = H	2 n (78%)
(6) $R^3 = I$	H (1d)	R = H	2 i (77%)	(12) 1	h	$R = {}^{i}Bu$	2o (70%)

^{*a*} 10 mol % catalyst, 100 °C, 12 h for alcohols (6.0 equiv) and 24 h for water. ^{*b*} Water and 3-pentanone (vol. 1:1) were used as a mixing solvent. ^{*c*} Yields were reported after separation from a silica column.

catalysts, including CpRuL(CH₃CN)₂PF₆ [L = PPh₃, P(t-Bu)₃, and P(n-Bu)₃] and C₅Me₅RuPPh₃(CH₃CN)₂PF₆,¹⁷ which failed to show any catalytic activity. One possible reason is that these complexes may react with benzene to give stable XRu(π benzene)PF₆ (X = Cp, C₅Me₅) species.^{4b}

We used this new method for the synthesis of substituted aromatic compounds containing hydroxy and alkoxy functionalities via treatment of various unfunctionalized enediynes with water and alcohols. As shown in Table 1, entries 1-5 show examples of the regioselective alkoxylation of *o*-ethynylphenyl alkynes 1a-1c with *n*-butanol, *i*-butanol, and *sec*-butanol; the corresponding 1-alkoxynaphthalenes 2d-2h were obtained in good yields (60-81%). We further established the reliability of this method by conducting similar alkoxylation and hydroxylation reactions using the enediynes 1d-1h, which gave highly substituted benzene derivatives 2i-2o (entries 6-12) in good yields (70-81%), each as a single regioisomer.

We extended this method to the synthesis of diphenylamine derivatives via nucleophilic carbon-nitrogen bond formation (Table 2). In a typical operation, enediynes and neat aniline (6.0 equiv) were heated with 10% ruthenium catalyst (100 °C, 15 h). For enediynes 1a, 1d, and 1f, nucleophilic cyclization worked for anilines but not for aliphatic amines.¹⁴ Although the same regiochemistry was observed for these enediynes, we obtained both N-aryl (A) and ortho-C-aryl (B) products in most cases. The amounts of the corresponding para-C-aryl products were too low for isolation except for entry 2, where (4b-C) was obtained in 32% yield. For enediyne 1a, the N-aryl and ortho-C-aryl products were obtained in equal proportions (entries 1 and 2), whereas the analogues 1d and 1f preferably gave N-aryl products (4c-A)-(4f-A) in 52-63% (entries 3-6). Notably, such an aniline addition failed to work with enediynes 1b, 1c, and 1e, which have an internal alkyne. Compared to enediyne 1a, species 1b and 1c bearing an internal alkyne were also less

Table 2. Aromatization via Addition of Anilines to Enediynes

R^1 R^2 Ru = 10	≠ ArNHR \$ 9 mol% TpRuF	$\xrightarrow{[Ru]} \xrightarrow{R^1}_{R^2}$	$ \begin{array}{c} \text{NRAr} \\ \downarrow \\ \text{A} \end{array} + R^{1} \\ R^{2} \end{array} $	B NHR	$R^{1} \xrightarrow{R^{2}} C$
enediynes	ArNHR ^a	products (yields) ^b	enediynes	ArNHR	products (yields)
$(1) \qquad \qquad$	PhNH ₂	4a-A (42%), 4a-B (35%)	(4) 1d	PhNHMe	4d-A (63%) 4d-B (14%)
1a (2) 1a	PhNHMe	4b-A (29%), 4b-C (32%)	(5) $R^1, R^2 = -(CH_2)_4$ -	PhNH ₂	4e-A (63%) 4e-B (18%)
(3) $R^1, R^{2=}$ -(CH ₂) ₃ - 1d	PhNH ₂	4c-A (57%), 4c-B (21%)	(6) 1f	PhNHMe	4f-A (52%) 4f-B (16%)

^{*a*} 10 mol % catalyst, aniline (6.0 equiv), 100 °C, 15 h. ^{*b*} Yields were reported after purification from a silica column.

Table 3. Aromatization via Carbon Nucleophiles to Enediyne 1a

 a 10 mol % catalyst, nucleophiles (6.0 equiv), 100 °C, 15 h. b Yields were reported after separation from a silica column.

effective in the water and alcohol addition reactions (Scheme 3 and Table 1).

The synthetic potential of this method is further enhanced by its compatibility with carbon-centered nucleophiles, as is evidenced by the range of examples in Table 3. These reactions were performed by heating enediyne **1a** with neat carboncentered nucleophiles (6.0 equiv) at 100 °C for 15 h. The method worked well for pyrrole, which gave 2-aryl pyrrole **5a** in 73% yield. The efficiency of cyclization for silyl enol ether was low (entry 2), and the corresponding product **5b** was obtained in 28% yield. Ethyl acetoacetonate (EA) was active in cyclization, and gave *C*-aryl product **5c** (62%), whereas dimethyl malonate (DMA) gave 1-naphthalene species **5d** in 64% yield through decarboxylation reaction. Heating **1a** with neat Et₃SiH (6.0 equiv) and catalyst (10 mol %, 100 °C, 15 h) only led to a 66% recovery yield of starting **1a**.

Table 4 summarizes the results for the generality of this cyclization with suitable carbon-centered nucleophiles. Enediynes **1b**, **1e**, and **1h** bearing an internal alkyne were compatible with this new method. EA, DMA, and pyrrole were added very regioselectively to these enediynes and gave aromatic products **5e**-**5p** as a single regioisomer; except for entry 3, the yields exceeded 60%. Notably, the reaction with methylsubstituted ethyl acetoacetate (entry 2) gave 1-naphthalene **5f** (60% yield), which contains a tertiary acetoacetate substituent.

⁽¹⁷⁾ CpRuL(CH₃CN)₂PF₆ [L = PPh₃, P(t-Bu)₃, and P(n-Bu)₃] and C₃Me₅-RuPPh₃(CH₃CN)₂PF₆ complexes were prepared in situ by treatment of CpRu(CH₃CN)₃PF₆ and C₃Me₅Ru(CH₃CN)₃PF₆ with an equimolar amount of phosphine ligand.

Table 4. Regioselective Aromatizations of Enediynes with Carbon Nucleophiles

(2)	1 b		R = OEt	(8) $R^* = H(11)$	EA	R = ~~OE
		1	5f (60%)	(0) 10		51 (76%)
(3)	1 b	DMA.°	$R = CH_2CO_2Me$	(9) 11	DMA	$R = CH_2CO_2Me$ 5m (73%)
R ¹ , R	$^{2} = -(CH_{2})$	3-	5g (50%) O O	(10) 16		R = NH
(4) R	$^{3} = H(1d)$	EA		(10) 11		
			5h (60%)	$R^{1}=H, R^{2}={}^{n}C_{6}H_{13}$		5n (81%)
(5)	1 d	◯ NH	R = NH			0 0
			5i (78%)	(11) $R^3 = Me(1h)$	EA	
(6) R	$^3 = Me(1e)$	EA		(12) 11	DMA	50 (73%)
			5i (62%)	(12) 11	DMA	$R = CH_2CO_2Me$ 5p (65%)

 a 10 mol % catalyst, nucleophiles (6.0 equiv), 15 h. b Yields were reported after separation from a silica column. c EA = ethyl acetoacetate. DMA = dimethyl malonate.

Scheme 4

 a 10 mol % catalyst, <code>"butanol</code> (6.0 equiv) 100 °C, 15 h. b Toluene solvent. c Yields were separated from a silica column.

Scheme 4 shows the structural effects of the substrates on the catalytic activity. Enediyne 1i, which bears a pent-1-ynyl group, failed to react with *n*-butanol, but cyclized itself to give cyclopentyl species **6a** (27%) via a C-H bond insertion. The yield of compound 6a was increased to 35% by heating species 1i in toluene (100 °C, 15 h). Interestingly, enediynes 1j and 1k bearing a long hex-1-ynyl and oct-1-ynyl group gave improved yields of cyclopentyl products 6b (54%) and 6c (61%). The enhancing effect of the longer alkynyl alkyl group of enediynes is opposite to the results observed in preceding nucleophilic cyclizations. Furthermore, the structures of products 6a-6c are distinct from those using rhodium catalysts, which gave a cyclopentyl ring fused at the naphthyl C(2) and C(3) carbons.^{6b} These results suggest that this C-H bond insertion does not proceed via a diradical mechanism (Scheme 1, eq 2). The ⁿBuOH addition failed to work with enediyne **11**, which has two internal alkyne substituents.

We are uncertain whether the mechanism of nucleophilic aromatization of enediynes is the same as that for intramolecular Scheme 5

^{*a*} 10 mol % catalyst, [substrate] = 1.2 M, isobutanol 95 °C, 12 h. ^{*b*}Yields were isolated from a silica column.

Scheme 6

arene

 $\mathbf{R} = \mathbf{C}\mathbf{H}_{\mathbf{a}}\mathbf{C}\mathbf{O}_{\mathbf{a}}\mathbf{M}\mathbf{e}$

o o

5k (75%)

^{*a*} 10 mol % catalyst, [substrate] = 0.75 M, toluene 100 °C, 15 h. ^{*b*}Yields were isolated from a silica column.

aromatization via the C-H bond insertion. We prepared substrates 1m-1o and 1p-1r bearing a methoxy group at the phenyl C(4) and C(5) carbons, respectively, to clarify the role of the cationic nature of the reaction intermediates. As shown in Scheme 5, (1-isobutoxy)naphthalene derivatives 7a-7c were obtained in 58-61% yields, which were slightly lower than that (65%) of the parent compound 2e (X = Y = H, Table 2), whereas cyclopentane derivatives 8a-8c were obtained in 78-85% yields (Scheme 6), which are much higher than that (54%) of the unsubstituted analogue 6b (Scheme 4). This information suggests that the key intermediates for nucleophilic aromatization are likely to be neutral species, whereas those in intramolecular C-H bond insertion may be cationic naphthyl carbene intermediates A and B (Scheme 2).¹⁸ The notation that cationic naphthyl carbene intermediates are involved in nucleophilic cyclization is contradicted by the inactivity of the enediyne 1a toward Et₃SiH¹⁹ (Table 3, entry 5).

⁽¹⁸⁾ These methoxy experiments suggest that the intermediates for the C-H bond insertion likely involve the following two cationic naphthyl carbenes A and B via electrocyclization of ruthenium-π-alkyne and ruthenium-vinylidene species, respectively (see Scheme 2). The methoxy groups will stabilize these carbenium species and give better yields of insertion products. In our preliminary results, we found that the alkynyl deuterium of starting ruthenium-π-alkyne species 1j (X = Y = H, R = "Bu) was transferred equally to the C(3) and C(4) carbons of the cyclopentyl product 6b.

J. AM. CHEM. SOC. = VOL. 127, NO. 10, 2005 3409

Scheme 7

 $^{\it a}$ 10.0 equiv of D2O. $^{\it b}22$ equiv of D2O. $^{\it c}$ Unreacted 1a after catalytic reaction.

X = 0.60DY = 1.0 H, X = 0.45H

(3) $X = 0.97D H_2O^a$

The mechanism for nucleophilic aromatization has been elucidated on the basis of a series of experiments. As shown in Scheme 7, we found that TpRuPPh₃(CH₃CN)Cl¹² (1.0 equiv) reacted with enediyne **1j** (2.5 equiv) in hot 3-pentanone (100 °C, 12 h) and gave 1-chloronaphthalene **9** in 76% yield on the basis of ruthenium reagent. This cyclization followed the same regiochemistry as preceding examples, and C–H bond insertion did not occur in this case although a *n*-butyl group is tethered with **1j**. We did not observe a similar chloride insertion for internal alkyne **1s**. This phenomenon suggests that a diyne functionality is required for this chloride insertion. The terminal alkyne of species **ij** is thought to serve as an entering group to facilitate the chloride insertion via intramolecular coordination.²⁰

Scheme 8 shows deuterium labeling experiments. Treatment of enediyne **1b** with D₂O (10.0 equiv) in 3-pentanone gave naphthalene **d-2b** with deuterium contents of 100 and 46%, respectively, at the C4 and C3 carbons (entry 1). Notably, the alkynyl proton of unreacted **1b** was also deuterated (50%), which indicated that proton exchange with D₂O occurred.²¹ This exchange process accounts for the lower proton content (30%) at the C3 carbon of **d-2b** in the presence of D₂O in 22-fold proportions (entry 2). The alkynyl deuterium of **1b** was transferred mainly to the C3 carbon of the product **d-2b** (entry 3) with a 40% loss of deuterium content. This labeling experiment indicates that the catalytic cycle is achieved by Scheme 9

 π -alkyne species rather than ruthenium-vinylidene because there is no 1,2-hydrogen shift in the cyclization.

The direct support of ruthenium $-\pi$ -alkyne intermediates in this nucleophilic aromatization is shown in Scheme 9. Treatment of enediynes **10a,10b** with TpRuPPh₃(CH₃CN)₂PF₆ catalyst (10 mol %) in hot isobutanol gave addition products **11a** and **11b** in respective yields of 56 and 59%. The absence of a 1,2-iodo shift in this aromatization is indicative of a ruthenium $-\pi$ -alkyne species as an active intermediate. Ruthenium $-\nu$ inylidene intermediates are expected to lead to a 1,2-shift of alkynyl iodide.²² Formation of naphthalene products **11a** and **11b** may arise from the attack of ⁱBuOH at the more electron-rich alkyne substituent (R = H, Me), and this regiochemistry is identical to that in the preceding examples in considering this electronic effect. The structures of **11a** and **11b** were characterized on the basis of the ¹H NOE effect.²³

The stoichiometric reaction described in Scheme 7 is very informative and leads us to propose a plausible mechanism based on the observation that the Ru-Cl bond of TpRuPPh₃(CH₃-CN)Cl¹² is inserted into the internal alkyne group of enediyne 1j to trigger aromatization. The proposed mechanism in Scheme 10 is consistent with our observations (see Schemes 6, 8, and 9), which preclude the involvement of cationic naphthyl species A (or **B**) and ruthenium-vinylidene intermediates. We propose that TpRuPPh₃(CH₃CN)₂⁺ species, after the loss of a CH₃CN ligand, selectively binds to the more electron-rich internal alkyne (R = H, alkyl) of enediyne and gives ruthenium $-\pi$ -alkyne species (I). This π -alkyne selectivity is attributed to the cationic ruthenium nature of species (I). A possible route involves the ligand exchange of nucleophiles with CH₃CN at the ruthenium center, followed by insertion of the Ru–NuH σ -bond of species (II) into the alkyne group to form vinylruthenium species (III). An intramolecular 6-endo-dig cyclization of species (III) gave naphthylruthenium intermediate (IV) and ultimately led to the observed aromatization products via protonation.

An alternative route involves a direct nucleophilic addition at species (I) to form vinylruthenium species (III), with ruthenium coordinated to a remaining alkynyl group (X = H, I). This pathway is applicable to pyrrole nucleophiles because they cannot undergo ligand exchange with ruthenium center since the pyrrole nitrogen is not a good ligating atom. The nucleophilic attack at ruthenium–di- π -alkyne species depicted in Scheme 2 (path iii) is unlikely to occur because the expected regiochemistry is not consistent with our observations.

The insertion process $(I) \rightarrow (II) \rightarrow (III)$ is proposed on the basis of stoichiometric cyclization of enediyne **1j** using TpRuPPh₃(CH₃CN)Cl complex (see Scheme 7), which apparently coordinates to the more electron-rich alkyne group (R = H, Me, Et) before delivery of the chloride ligand. According to the literature,¹² the structure of intermediate (II) is proposed to

⁽¹⁹⁾ Et₃SiH will add to carbene intermediate via a Si-H bond insertion. See: (a) Alder, R. W. In *Carbene Chemistry*; Bertrand, G., Ed.; Marcel Dekker: New York, 2002; p 153. (b) Bertrand G. In *Carbene Chemistry*; Bertrand, G., Ed.; Marcel Dekker: New York, 2002; pp 177–203.

⁽²⁰⁾ Although our proposed mechanism suggests the feasibility of the catalytic addition of HCl to enediyne 1j, the yield was only 15% using 10 mol % TpRuPPh₃(CH₃CN)₂PF₆ (3-pentanone, 100 °C, 72 h) and HCl (aq, 2.0 equiv). Under this condition, unreacted enediyne 1j was only recovered in 15% with formation of a black heavy oil. This information suggests that this catalytic reaction is slower than the decomposition of enediynes 1j by ruthenium catalyst alone.

⁽²¹⁾ The exchange between D₂O and alkynyl proton can proceed via an alkynyl ruthenium hydride species, which was responsible for the ruthenium-πalkyne and ruthenium-vinylidene equilibrium. See refs 12 and 16.

⁽²²⁾ Miura, T.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 518.

⁽²³⁾ The ¹H NOE map of naphthalenes **11a** and **11b** is shown in the Supporting Information.

Scheme 11

be a TpRuL(NuH)(π -alkyne)⁺ cation rather than a neutral species, TpRuL(Nu)(π -alkyne). This insertion step also provides a good rationale for the aniline-addition regiochemistry, which gives *ortho*-C-aryl products B (Table 2), whereas the *para*-C-aryl products are not seen in most cases. The preference for *ortho*-C-aryl product is thought to arise from the intramolecular cyclization of species (II), depicted in Scheme 11. The resulting cis-insertion species *cis*-III' can be transformed into the vinyl-ruthenium π -alkyne III via isomerization of *cis*-vinylmetal to its *trans*-vinylmetal species.^{24,25} The feasibility of this process is likely to occur by rotation of the σ -carbon–carbon bond of the resonance structure (**III**').

In this catalytic reaction, enediyne **11** bearing two internal alkynes (Scheme 4, entry 5) is not catalytically active in the ⁿBuOH addition. We believe that this is caused by the congested environment of intermediate III, in which the two methyl groups exert steric hindrance with the bulkyl TpRuPPh₃ fragment. Such a hindrance inhibits the formation of intermediate III. The adverse effects of a long internal alkynyl on the aromatization have been observed in our results. For example, the endiyne bearing a $\mathbf{R'} = {}^{n}$ Pr group is inactive in the "BuOH addition, whereas its analogues $\mathbf{R'} = H(\mathbf{1a})$, Me(1b), and Et (1c) show catalytic activities with product yields following the trend $\mathbf{1a} > \mathbf{1b} > \mathbf{1c}$. Similarly, aniline and pyrrole addition reactions work only for enediynes $\mathbf{1a}$, $\mathbf{1d}$, and $\mathbf{1f}$ (Table 3), but not for those enediynes $\mathbf{1b}$, $\mathbf{1c}$, $\mathbf{1e}$, and $\mathbf{1b}$ bearing an internal alkyne.²⁶

Conclusions

In summary, we have reported a new nucleophilic aromatization of unstrained enediynes catalyzed by TpRu(PPh₃)(CH₃-CN)₂PF₆ catalyst. The value of this cyclization is indicated by the regioselectivity of nucleophilic addition, which occurs only at the more electron-rich alkyne carbon. The cyclization is compatible with various mild nucleophiles including water, alcohols, aniline, pyrrole, ethyl acetylacetonate, and dimethyl malonate, which reflects nucleophilic C-X (X = O, N, C) bond formation. This method is very useful because it provides easy access to functionalized aromatic compounds from readily available unfunctionalized enediynes. We propose a nucleophilic addition/insertion mechanism²⁷ based on the results of a series of experiments, which preclude the involvement of rutheniumvinylidene and cationic naphthyl species in the reaction mechanism. In the case of enediynes bearing a long alkyl substituent, we observed the aromatization of these enediynes accompanied by a C-H bond insertion, and the mechanism likely involves a naphthyl cation¹⁸ according to the methoxy substituent effects. We will expand the scope of this C-H bond insertion and characterize its mechanism in future studies.

Experiment Section

(1) General Sections. Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere in oven-dried glassware using standard syringe, cannula, and septa apparatus. Benzene, diethyl ether, tetrahydrofuran, and hexane were dried with sodium benzophenone and distilled before use. TpRuPPh₃(CH₃CN)₂PF₆ (1) catalyst was prepared by heating TpRu(PPh₃)₂Cl with LiPF₆ in CH₃CN.¹² Enediyne **1a** was prepared according to the literature procedure.^{4b} Synthesis of representative enediynes is given in the Supporting Information.

⁽²⁶⁾ Enediyne 1t bearing a CO₂Me group is not active in the "BuOH addition. We envisage that this enediyne will give the intermediate III according to our proposed mechanism. We believe that the ester group of species III exerts steric hindrance with the TpRuPPh₃ fragment to destabilize this species in accordance with our proposal in the text. This observation strengthens our views about the steric effects of enediynes on the catalytic activity.

(27) As suggested by one reviewer, this nucleophilic aromatization should be effected by other π-alkyne activators such as PtCl₂ and AuCl₃ according to the propose mechanism. In the reaction of enediyne 1a and 1b with water/3-pentanone, PtCl₂ (10 mol %) gave 1-naphthonls 2a and 2b in 30 and 35% yields, respectively, whereas AuCl₃ was catalytically inactive. In the Pt case, water preferably attacks the propynyl C(1) carbon, following the same regiochemistry as ruthenium catalyst. The mild activity of PtCl₂ gives additional support for the proposed π-alkyne intermediate.

⁽²⁴⁾ For a mechanistic study of the *cis*-vinylmetal and *trans*-vinylmetal isomerization reaction, see: Bodner, G. S.; Smith, D. E.; Hatton, W. G.; Heah, P. C.; Georgiou, S.; Reingold, A. L.; Geib, S. J.; Hutchinson, J. P.; Gladysz, J. A. J. Am. Chem. Soc. **1987**, 109, 7688.

⁽²⁵⁾ For the trans-insertion of alkyne into metal-hydride and -chloride bonds, see: (a) Huggins, J. M.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 3002. (b) Vessey, J. D.; Mawby, R. J. J. Chem. Soc., Dalton Trans. 1993, 51.

(2) Standard Procedure for Ruthenium-Catalyzed Aromatization of Enediynes by Water. To a 3-pentanone/water mixture (vol 1:1, 0.60 mL) of enediyne 1a (100 mg, 0.79 mmol) was added TpRuPPh₃-(CH₃CN)₂PF₆ (60 mg, 0.079 mmol), and the mixture was heated at 100 °C for 24 h. The solution was concentrated and eluted through a silica column (hexane/EA = 5:1) to give 1-naphthol 2a (86 mg, 0.60 mmol, 75%) as a white solid.

(3) Standard Procedure for Ruthenium-Catalyzed Aromatization of Enediynes by Alcohols. To an isobutanol solution (0.60 mL, 6.48 mmol) of enediyne 1a (100 mg, 0.79 mmol) was added TpRuPPh₃(CH₃-CN)₂PF₆ (60 mg, 0.079 mmol), and the mixture was heated at 100 °C for 12 h. The solution was concentrated and eluted through a silica column (hexane) to give (1-isobutanoxy)naphthelene 2d (128 mg, 0.64 mmol, 81%).

(4) Standard Procedure for Ruthenium-Catalyzed Aromatization of Enediynes by Anilines. To an aniline solution (0.50 mL, 5.48 mmol) of enediyne 1a (100 mg, 0.79 mmol) was added TpRuPPh₃(CH₃-CN)₂PF₆ (60 mg, 0.079 mmol), and the mixture was heated at 100 °C for 15 h. The solution was eluted through a short silica column with hexane to remove catalyst and excess aniline. The hexane eluent was concentrated and eluted through a silica column to give naphthalene 4aA (73 mg, 0.33 mmol) and 4aB (61 mg, 0.28 mmol) in 42 and 35% yields, respectively.

(5) Standard Procedure for Ruthenium-Catalyzed Aromatization of Enediynes Carbon-Centered Nucleophile. To an ethyl acetonate solution (0.5 mL, 3.94 mmol) of enediyne 1a (100 mg, 0.79 mmol) was added TpRuPPh₃(CH₃CN)₂PF₆ (60 mg, 0.079 mmol), and the mixture was heated at 100 °C for 15 h. The solution was eluted through a short silica column with hexane to remove catalyst and excess ethyl acetonate. The hexane eluent was concentrated and eluted through a silica column to give naphthalene 5c (126 mg, 0.49 mmol, 62%).

(6) Standard Procedure for Ruthenium-Catalyzed Cyclization via C–H Bond Insertion. To a toluene solution (0.60 mL) of enediyne 1i (100 mg, 0.59 mmol) was added TpRuPPh₃(CH₃CN)₂PF₆ (45 mg, 0.059 mmol), and the mixture was heated at 100 °C for 15 h. The solution was concentrated and eluted through a short silica column with hexane to give cyclopentane derivative **6a** (35 mg, 0.21 mmol, 35%).

(7) Spectral Data for Naphthalen-1-ol (2a): IR (neat, cm⁻¹): 3300 (br, vs), 3066 (w), 1600 (m), 1085 (m); ¹H NMR (400 MHz, CDCl₃): $\delta \sim 8.18 - 8.15$ (m, 1 H), $\sim 7.82 - 7.79$ (m, 1 H), $\sim 7.49 - 7.42$ (m, 3 H), 7.29 (t, 1 H, J = 8.0 Hz), 6.80 (d, 1 H, J = 8.0 Hz), 5.20 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 151.2, 134.7, 127.6, 126.4, 125.8, 125.3, 124.3, 121.4, 120.7, 108.7; HRMS calcd. for C₁₀H₈O 144.0575. Found 144.0585.

(8) Spectral Data for 1-Isobutoxynaphthalene (2d): IR (neat, cm⁻¹): 3056 (w), 1610 (w), 1582 (s), 1245 (s), 1130 (s); ¹H NMR (400 MHz, CDCl₃): $\delta \sim 8.34 - 8.31$ (m, 1 H), $\sim 7.82 - 7.79$ (m, 1 H), $\sim 7.52 - 7.45$ (m, 2 H), $\sim 7.43 - 7.35$ (m, 2 H), 6.79 (d, 1 H, J = 7.2 Hz), 3.91 (d, 2 H, J = 6.4 Hz), $\sim 2.31 - 2.21$ (m, 1 H), 1.12 (d, 6 H, J = 9.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 154.9, 134.5, 127.4, 126.3,

125.9, 125.8, 125.0, 122.1, 119.9, 104.5, 74.4, 28.4, 19.4; HRMS calcd. for $\rm C_{14}H_{16}O$ 200.1201. Found 200.1205.

(9) Spectral Data for Naphthalen-1-yl-phenylamine (4a-A): IR (neat, cm⁻¹): 3411 (vs), 3022 (w), 1622 (w), 1308 (m); ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, 1 H, J = 8.8 Hz), 7.85 (d, 1 H, J = 8.8 Hz), 7.56 (d, 1 H, J = 7.6 Hz), ~7.51–7.44 (m, 2 H), ~7.43–7.35 (m, 2 H), 7.25 (t, 2 H, J = 7.6 Hz), 6.98 (d, 2 H, J = 7.6 Hz), 6.90 (t, 1 H, J = 7.6 Hz), 5.86 (br, 1 H); ¹³C NMR (150 MHz, CDCl₃): δ 144.7, 138.7, 134.7, 129.3 (×2), 128.5, 127.7, 126.1, 126.0, 125.7, 123.0, 121.8, 120.5, 117.4 (×2), 115.9; HRMS calcd. for C₁₆H₁₃N 219.1048. Found 219.1040.

(10) Spectral Data for 2-Naphthalen-1-yl-phenylamine (4a-B): IR (neat, cm⁻¹): 3401 (vs), 3022 (w), 1628 (w), 1265 (m); ¹H NMR (600 MHz, CDCl₃): δ 7.82 (d, 1 H, *J* = 8.1 Hz), 7.81 (d, 1 H, *J* = 8.2 Hz), 7.57 (d, 1 H, *J* = 8.4 Hz), 7.47 (t, 1 H, *J* = 7.7 Hz), 7.42 (t, 1 H, *J* = 7.0 Hz), 7.37 (d, 1 H, *J* = 7.0 Hz), 7.34 (t, 1 H, *J* = 7.2 Hz), 7.18 (td, 1 H, *J* = 8.0, 1.5 Hz), 7.01 (dd, 1 H, *J* = 8.0, 1.5 Hz), 6.80 (td, 1 H, *J* = 6.8, 1.5 Hz), 6.75 (d, 1 H, *J* = 8.0 Hz), 3.38 (br, 2 H); ¹³C NMR (150 MHz, CDCl₃): δ 144.3, 136.9, 133.8, 131.6, 131.1, 128.7, 128.2, 127.9, 127.5, 126.2, 126.0, 125.9, 125.8, 125.7, 118.2, 115.2; HRMS calcd. for C₁₆H₁₃N 219.1048. Found 219.1040.

(11) Spectral Data for 2-Naphthalen-1-yl-3-oxo-butyric Acid Ethyl Ester (5c): IR (neat, cm⁻¹): 3054 (w), 2982 (w), 1709 (s), 1637 (s), 1127 (s); ¹H NMR (400 MHz, CDCl₃): $\delta \sim 7.88 - 7.85$ (m, 1 H), $\sim 7.82 - 7.80$ (m, 1 H), 7.72 (d, 1 H, J = 8.4 Hz), $\sim 7.52 - 7.48$ (m, 2 H), 7.44 (t, 1 H, J = 8.4 Hz), 7.13 (d, 1 H, J = 8.4 Hz), 4.78 (s, 1 H) 4.02 (q, 2 H, J = 6.8 Hz), 2.63 (s, 3 H), 1.14 (t, 3 H, J = 6.8 Hz); ¹³C NMR (150 MHz, CDCl₃): δ 172.6, 167.6, 149.1, 134.9, 128.0, 126.7 (×2), 126.5, 125.8, 125.7, 121.5, 117.9, 96.3, 59.5, 18.2, 14.2; HRMS calcd. for C₁₆H₁₆O₃ 256.1099. Found 256.1150.

(12) Spectral Data for 2,3-Dihydro-1*H*-cyclopenta[α]naphthalene (6a): IR (neat, cm⁻¹): 3028 (w), 2986 (w), 1717 (s), 1618 (w); ¹H NMR (400 MHz,CDCl₃): δ 7.86 (d, 1 H, J = 7.6 Hz), 7.81 (d, 1 H, J = 8.4 Hz), 7.69 (d, 1 H, J = 8.4 Hz), 7.50 (t, 1 H, J = 6.8 Hz), 7.43 (t, 2 H, J = 9.2 Hz), 3.27 (t, 2 H, J = 7.2 Hz), 3.13 (t, 2 H, J = 7.2Hz), 2.31–2.25 (m, 2 H); ¹³C NMR (150 MHz): δ 140.9, 139.4, 132.5, 130.4, 128.3, 126.6, 125.8, 124.6, 124.3, 123.3, 33.8, 31.0, 24.5; HRMS calcd. for C₁₃H₁₂ 168.0939. Found 168.0934.

Acknowledgment. We thank the National Science Council, Taiwan, for supporting this work.

Supporting Information Available: Synthetic procedures for enediynes, NMR spectra, spectral data of compounds 1a-1r, 2a-2o, 3, 4a(A)-4f(B), 5a-5p, 6a-6c, 7a-7c, 8a-8c, 9, 10a,10b, 11a,11b, and ¹H NMR spectra of deuterium-labeled 2b. This material is available free of charge via the Internet at http://pubs.acs.org.

JA043047J